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Madey’s and Liouville’s theorems relating to free-electron lasers without inversion
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The small-gain regime of free-electron lasers~FEL! without inversion is considered and seeming contradic-
tions with the traditional theory of FEL are resolved. As a result, a generalized Madey’s theorem is obtained
for the case of a phase shift given to electrons between the two wigglers. It explicitly demonstrates the
contribution of interference of radiation from the wigglers. It is shown, by considering the motion in the phase
space, that Liouville’s theorem applied to the motion of electrons in a two-dimensional~rather than one-
dimensional! real space is consistent with a nonzero integral of the gain over electron energies. These conclu-
sions are crucial for the achievement of orders-of-magnitude improvement in the FEL gain in the case of a
large electron energy spread.@S1063-651X~98!03203-6#

PACS number~s!: 41.60.Cr, 42.25.Hz, 03.20.1i
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I. INTRODUCTION

Free-electron lasers~FEL! @1# use the kinetic energy o
relativistic electrons moving through a spatially modulat
magnetic field~wiggler! to produce coherent radiation. Th
frequency of radiation is determined by the energy of el
trons and the spatial period of the magnetic field. This p
mits tuning a FEL in a broad range unlike atomic or molec
lar lasers. Therefore for the purposes of achievemen
short-wavelength lasers, it is important to consider poss
limitations of the FEL gain.

For the case of a small-gain and a small-signal reg
~i.e., laser intensity is much less than the saturation intens!
Madey has proved a theorem@2#, which greatly simplifies
the calculation of the FEL gain. Some generalizations of t
theorem have been found@3#. The statement of the theorem
is that the FEL gain is proportional to the derivative of t
power of spontaneous emission when both are considere
functions of the injected electron energyEi ,

gain}
d

dEi
spontaneous emission. ~1!

This immediately imposes the restriction that

E
2`

1`

gain dEi50, ~2!

since spontaneous emission turns to zero both at very
and very low injected energies.

Liouville’s theorem@4#, which is valid for Hamiltonian
dynamical systems, states that the density of noninterac
particles in the one-particle phase space is conserved a
their trajectories. This leads to the same conclusion~2! of a
vanishing gain integral in the case of an effectively on
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dimensional motion of the electrons@5#. This property of the
FEL gain leads in the presence of a wide energy sprea
electrons to a fast decrease~faster than in the case of Dopple
broadening in atomic lasers! of the gain. Since the relative
width of gain as a function of the electron energy decrea
with the laser wavelength, it is one of the major obstacles
the way to short-wavelength FELs.

Recently new approaches to increasing gain in atomic
sers based on quantum coherence and interference have
proposed@6#. This concept, lasing without inversion, has i
teresting implications for the FEL as well, leading to a ne
type of FEL @7#, the free-electron laser without inversio
~FELWI!. The FELWI is conceptually implemented via in
terference of the radiation from two wigglers and an app
priate phasing of the electrons in the static magnetic field
the drift region between the wigglers. The static magne
field deflects the electrons to angles depending on their
locities so that the electrons travel along different paths
encounter different phases of the laser field in the sec
wiggler. Electrons having smaller velocities than the pha
velocity of the ponderomotive potential are given an ad
tional phase shift ofp via inhomogeneity of magnetic field
As a result, the integral of the gain is nonzero. This promi
a much higher gain for short-wavelength FELs, but at
same time seems to contradict some well-established not
of the FEL theory. The aim of this paper is to resolve the
contradictions by explicitly demonstrating how modified ve
sions of the conventional reasoning are applicable to FEL
and thereby to support the possibility of a practical imp
mentation of FELWI schemes.

In Sec. II the equations of motion for FELs are derived f
further reference. In Sec. III the modified Madey theorem
illustrated for the case of uniform wigglers, and the nume
cal as well as analytical results for FELWI are discuss
The theorem is proved for the general case in Appendix
Section IV shows how a consistent application of Liouville
theorem allows us to avoid contradictions with the FELW
results. And finally, the ways to implement the phase de
of electrons in the drift region between the wigglers
order to achieve necessary interference are discusse
Appendix B.
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57 3445MADEY’S AND LIOUVILLE’S THEOREMS RELATIN G . . .
II. EQUATIONS OF MOTION FOR FEL

The classical dynamics of electrons in the FEL can
represented~we disregard the scalar potential! by the Hamil-
tonian @8#

H5E[gmc25cA~p2eA!21m2c2, ~3!

wherem ande are the mass and the charge of the electronc
is the speed of light,g is referred to as the Lorenz facto
related to the energyE, p is the canonical momentum, andA
is the vector potential of the combined electromagnetic fi
of the wiggler ~designated by a subscriptW) which is ori-
ented along thez axis, and the laser field~designated by a
subscriptL) which propagates at an angleu relative to the
axis of the wiggler, as is shown in Fig. 1. For the unifor
wiggler the vector potential has the form

A52ŷ@AW cos~kWz!1AL cos~kzz1kxx2nt1f!#, ~4!

whereckz5n cosu andckx5n sinu. Both fields have only
a y component,f is the phase of the laser field at the m
ment when the electron enters the wiggler. Let us remark
we have neglected the spatial variation of the laser field~as
we restrict our consideration to the small-gain regime! simi-
larly to @1#.

Since the interaction in a FEL happens within fixed sp
tial coordinates, it is more convenient to take thez coordi-
nate rather thant as the independent variable. This leads t
canonical transformation~see@8# for details! with the new
Hamiltonian2K,

K5pz5eAz1AE2

c2
2~p'2eA'!22m2c2, ~5!

where p' and A' are the transverse momentum and t
transverse vector potential, respectively. Now timet and en-
ergy E play the role of a conjugate coordinate and mom
tum. Thus the equations of motion are as follows:

dpy

dz
5

]K
]y

50, ~6!

dpx

dz
5

]K
]x

52
e2

pz

]

]xS Ay
2

2 D , ~7!

dE
dz

52
]K
]t

5
e2

pz

]

]tS Ay
2

2 D , ~8!

FIG. 1. The setup of FELWI: two wigglers and a drift regio
between them,kL and kW are the wave vectors for laser field an
wiggler field, respectively.
e

d

at

-

a

-

dy

dz
52

]K
]py

5
2eAy

pz
, ~9!

dx

dz
52

]K
]px

5
px

pz
, ~10!

dt

dz
5

]K
]E 5

E
pzc

2
. ~11!

Here we takepy(0)50 and thereforepy(z)50 for all z.
This allows us from now on to take the wiggler motion in th
y direction out of consideration for the purposes of calcul
ing gain.

The right side of Eq.~7! contains, among other terms, th
‘‘ponderomotive’’ ~wiggler plus radiation! field which
propagates along thez direction with the phase velocityv r
5 n/qz,c, whereqz5kz1kW . The electrons having veloci
ties close to the resonant velocityv r interact with this field
most efficiently. We retain only these terms~an analog of the
rotating wave approximation, see@9#! and neglect the othe
terms having fast oscillation in the electron reference fram
This results in the proportionality of the energy change to
change of momentum for each electron in each act of pho
absorption or emission:

dE
dz

5N sin~qzz1kxx2nt1f!, ~12!

N5
2e2nAWAL

pz
, ~13!

dpx

dz
5

kx

n

dE
dz

, ~14!

dpz

dz
5

qz

n

dE
dz

. ~15!

Let us introduce the phasec relative to the ponderomo
tive potential as

c5qzz1kxx2nt1f, ~16!

and let us call ‘‘detuning’’ thez derivative ofc

V5qz1kx

dx

dz
2n

dt

dz
, ~17!

since atz50 it is proportional to the difference of the elec
tron velocity from the resonant velocityv r . Finally, with the
help of the equations of motion~7!–~11!, the second deriva-
tives of the coordinates can be expressed via the derivativ
energy (px , being of the first order in the laser field, is n
glected in comparison withpz)

d2t

dz2
5

1

pzc
2 S 12

Eqz

npz
DdE
dz

, ~18!

d2x

dz2
5

kx

pzn

dE
dz

. ~19!
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Thus we obtain the equation

dV

dz
5

1

pzn
S kx

21
qz

2

g r
2D dE

dz
. ~20!

Therefore in terms of variables (c,V) the dynamics of an
electron is expressed by the pendulum equations

dc

dz
5V,

dV

dz
5a sin c, ~21!

where the coupling constant

a5S kx
21

qz
2

g r
2D 2e2AWAL

pz
2

, ~22!

is proportional to the laser field amplitude and will be us
as the perturbation parameter. Equations~21! are associated
with the reduced~one-dimensional! Hamiltonian

H~c,V!5
V2

2
1a cosc, ~23!

which is the nonrelativistic Hamiltonian of an electron in t
reference frame of the ponderomotive potential@10#. The
dynamics of electrons inside the wiggler is effectively o
dimensional in spite of the two-dimensional motion~in the
x-z plane! caused by the oblique propagation of laser fie
These equations are the basis of our consideration of unif
wigglers. In the ultrarelativistic limit, small changes of th
energy, momentum, detuning, and velocity are proportio
to each other, so in order to calculate the gain we will nee
calculate the change in the average detuning of the electr

III. SMALL-GAIN REGIME OF FELWI

Here we apply the equations derived in Sec. II to t
electron motion in one and two uniform wigglers and de
v
st

e
rg
.
m

al
to
ns.

e
-

onstrate the traditional and our modified Madey’s theorem
We will look for the solution of Eqs.~21! in the form of a
perturbation series in the amplitude of the laser field:

V~z!5V0~z!1aV1~z!1a2V2~z!1••• , ~24!

c~z!5c0~z!5ac1~z!1••• , ~25!

where the initial conditions state that electrons start with
phasef and the injected detuningV i ,

V0~0!5V i , c0~0!5f, ~26!

Vn~0!50, cn~0!50, n.0. ~27!

The set of the equations becomes

d

dz
V050, ~28!

d

dz
c05V0 , ~29!

d

dz
V15sin c0 , ~30!

d

dz
c15V1 , ~31!

d

dz
V25c1 cosc0 . ~32!

Consider first a one-section wiggler of lengthLW . Inte-
grating Eqs.~28!–~32!, we directly obtain

V15
2 sin~V iz/2!sin@~V iz/2! 1f#

V i
, ~33!

c15
V iz cos~f!1sin f2sin~V iz1f!

V i
2

, ~34!
V25
242cos 2f14 cosV iz2cos 2~V iz1f!12V iz sin V iz12V iz sin~2f1V iz!

4V i
3

. ~35!
y of
Electrons are injected with random phases. Averaging o
the phasef cancels the contribution to the gain in the fir
order. In the second order it yields

gain}2^V2&5
222 cos~V iLW!2V iLW sin~V iLW!

2V i
3

.

~36!

It can be shown@8# that the spontaneous emission pow
from the electrons is proportional to the square of the ene
change~which we take in the first order of perturbation!
er

r
y

spontaneous emission}W[^V1
2&. ~37!

The above solution gives for the one-section wiggler

WI~V i !5S sin~V iLW/2!

V i
D 2

. ~38!

The same result can be obtained from the quantum theor
FEL. Comparing Eq.~36! and Eq.~38!, we explicitly see a
manifestation of Madey’s theorem:
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gain}2^V2&52
d

dV i
^V1

2~V i !&, ~39!

in other words, the gain is proportional to the derivative
the spontaneous emission spectrum. Let us suppose now
we have a two-section wiggler, with the second section be
identical to the first. In the drift region between the tw
d
rs
y

n

f
hat
g

wigglers the electrons can be given a velocity-depend
shift Df of their phase relative to the ponderomotive pote
tial. To achieve a positive integral of the gain over detuni
@11# we design the drift region so that the phase shift d
pends on the electrons’ injected velocity, and conseque
on V i .

A calculation similar to the one above gives for the co
responding values at the exit from the second wiggler
V15
cos~V iLW1f1Df!2cos~f1V iLW!1cosf2cos~V iz1f1Df!

V i
,

c15@V izcosf1V iLW cos~f1V iLW!2V iz cos~f1V iLW!2V iLW cos~Df1f1V iLW!1V iz cos~Df1f1V iLW!

1sin f2sin~f1V iLW!1sin~Df1f1V iLW!2sin~Df1f1V iz!#/V i
2 ,

V25$2814 cosDf2cos 2f14 cosV iLW14 cosV i~LW2z!24 cos~Df1V iLW!1cos 2~f1V iLW!

2cos 2~Df1f1V iLW!14 cos~Df1V iz!1cos 2~Df1f1V iz!24 cos@Df1V iLW~z2LW!#12V iLW sin~V iLW!

12V iLW sin V i~LW2z!22V iz sin V i~LW2z!22V iLW sin~Df1V iLW!

12V iLW sin~2f1V iLW!22V iLW sin~Df12f1V iLW!12V iz sin~Df1V iz!12V iz sin~Df12f1V iz!

12V iLW sin@Df1V i~z2LW!#22V iz sin@Df1V i~z2LW!#12V iLW sin@Df12f1V i~LW1z!#

22V iz sin@Df12f1V i~LW1z!#22V iLW sin@2Df12f1V i~LW1z!#12V iz sin@2Df12f1V i~LW

1z!#%/~4V i
3!.

Averaging over the initial phase yields

gain}2^V2&52$2412 cosDf12 cosV iLW12 cosV i~LW2z!22 cos~Df1V iLW!12 cos~Df1V iz!

22 cos@Df1V i~z2LW!#1V iLW sin~V iLW!1V iLW sin V i~LW2z!2V iz sin V i~LW2z!

2V iLW sin~Df1V iLW!1V iz sin~Df1V iz!1V iLW sin@Df1V i~z2LW!#

1V iz sin@Df1V i~z2LW!#%/~2V i
3!. ~40!
ion
l
re

the
Obviously, for zeroDf the two-wiggler gain coincides with
the result for the one-section wiggler of twice the length.

Spontaneous emission can be most readily estimate
the intensity of the superposition of radiation form the fi
(E1) and the second (E2) wiggler. Each wiggler separatel
givesWI;uE1,2u2, and together

WII ;uE1u21uE2u212uE1uuE2ucosw, ~41!

where

w5V iTW1Df ~42!

is the difference between the phase of the same electro
the two wigglers. Thus

WII ~V i ,Df!54WI~V i !cos2
w

2
. ~43!

The same result can be obtained by directly evaluating
as
t

in

WII ~V i ,Df!5^V1
2~V i ,Df!&. ~44!

Again by comparing Eq.~40! and Eq.~43! we explicitly see
the relation

gain}2^V2&52
]

]V i
^V1

2~V i ,Df!&, ~45!

where the partial derivative means that the differentiat
does not affectDf even though it depends on the initia
detuning. We prove this modified Madey theorem for a mo
general class of interaction Hamiltonians.

The modified Madey theorem can also be expressed in
equivalent form

gain}2^V2&52
1

2

d

dV i
^V1

2&

1 K V1~LW!
]

]c i
V1~2LW!L ]Df

]V i
. ~46!
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Here, the first term represents the usual contribution to
gain, whereas the second term is a contribution due to in
ference. This relation can be regarded as a modification
Madey’s theorem to include interference. The integral
gain for a one-section wiggler~39! over detunings has to b
zero, since it contains only a full derivative. However, t
integral of gain for a two-section wiggler~45! can be non-
zero, if the phase shiftDf in the interference term is prop
erly chosen. This crucial difference opens new possibilit
for building a new type of free-electron lasers having larg
gain and being more tolerant to spread of electrons.

To demonstrate such a possibility we set

Df5H p2VLW , V i,0

2VLW , V i.0
~47!

and find that the gain vanishes exactly forV i,0, and it is
positive almost everywhere forV i.0. This is accompanied
by a cancellation of spontaneous emissions for negative
tunings.

Considering electron trajectories in the phase space o
pendulum, i.e., the plane (c, V), can help us obtain som
physical insight into the previous results. In Figs. 2~a!–2~d!
we present a number of snapshots of the evolution in ph
space of a monoenergetic electron beam traveling thro
the FELWI. In Fig. 2~a!, we see electrons entering the fir
wiggler with various phases and the same detuning. In
first wiggler the electron dynamics depends on their ini
phases: some of the electrons lose energy but the others
energy@see Fig. 2~b!#. Then the electrons enter the drift re
gion where, traveling in the static magnetic field, th
change their phases relative to the ponderomotive pote
but do not change their energy~and thus their detuning!. The
change of phase is expressed by Eq.~47! and is determined
by their initial detuning rather than the detuning at the ex
from the first wiggler. The electrons with negative detuni
reverse their motion inside the second wiggler. It is clea
seen from Fig. 2~d! that for negative detuning we have pra

FIG. 2. Snapshots of the phase-space motion (V,c); ~a! initial
distribution of electrons before entering wigglers;~b! after the first
wiggler; ~c! after the drift region;~d! after the second wiggler.
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tically a monoenergetic electron beam exiting the FELW
As a result, the gain for negative detunings is zero. For p
tive detunings, the evolution in the second wiggler is simi
to that in the first wiggler: the electrons continue to lose~or
gain! energy in the second wiggler, if they were losing~re-
spectively, gaining! energy in the first. This results in a ce
tain gain for the laser field.

In Fig. 3 we compare the gain curves for an ordinary F
with that of a FELWI. Clearly, the integral of the FELW
gain over all detunings is positive, in contrast to an ordina
FEL having a zero integral. In an ordinary FEL the major
of the electrons must have positive detunings to provide a
gain, which can be defined as inversion. FELWI does
have to satisfy this condition, which gives another justific
tion for this term.

We emphasize the importance of the drift region design
produce the phase shift which depends on the detuning a
entrance to first wiggler rather than at the exit from the fi
wiggler. Phase trajectories demonstrate this most clea
Suppose that instead of the phase shift~47! we have a dif-
ferent one,

Df5H p2VLW , V,0

2VLW , V.0
~48!

whereV stands for the electron detuning at the exit from t
first wiggler ~rather thanV i at the entrance to the first wig
gler!.

Then there is a region near zero detuning@12# where the
phase shift causes a qualitative change in the phase-s
distribution. Figures 4~a!–4~d! demonstrate this case forV i
50. In previous cases the contribution of the electrons los
energy was, to the first order of perturbation, canceled by
contribution of the electrons gaining energy, and the net g
or loss depended on the violation of this balance in the s
ond order of perturbation. In the case of Eq.~48! this can-
cellation still exists in the first wiggler, but in the secon
wiggler all the electrons gain energy, so some loss ex
even in the first order of perturbation. This explains the sh
absorption dip in Fig. 5 near zero detuning. We would like
note here that this result is in agreement with@12#, where
one-dimensional motion has also been analyzed and
shown that FELWI is not possible for this case. We argue
the next section that an essentially two-dimensional mot
of electrons between the wiggler is required to implement
phase shift~47!.

The other result of our consideration of electron trajec
ries is that in the last case an extraordinarily high bunch
of electrons takes place for the phase shift~48!. This fact is

FIG. 3. Gain versus detuning for FEL and FELWI.
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very important for the dynamics of the laser field in t
large-gain regime. However, this is beyond the scope of
present paper and we plan to consider it in the future@13#.

The integral gain can be increased even further by vary
the parameters of the phase-shift functionDf for the drift
region:

Df5H a1b2gVLW , V i,0

b2gVLW , V i.0
. ~49!

By adjusting thea, b, g parameters it is possible not on
to cancel absorption, but also to create gain for nega
detunings. The peak gain higher than that of a usual FEL
the same total length can be achieved in a FELWI by w
glers with different lengths. But even without this optimiz
tion we are able to compare our FELWI gain with that e
perimentally obtained in@14#. Using the parameters of@14#
~energy of electrons is 14764 MeV, energy spread
6.531024, transverse dimensions 0.26 and 0.15 mm, m
netic field amplitude 4.0 kG, magnetic period 4 cm, numb
of periods 23! we calculate the peak gain for different wav
lengths, see Table I. The peak gains of FEL and FELWI
of the same order of magnitude because the inhomogen
broadening is relatively small, while the average gain

FIG. 4. Snapshots of the phase-space motion (V,c), for V i50
and phase shift in the form~48!; ~a! initial distribution of electrons
before entering wigglers;~b! after the first wiggler;~c! after the drift
region; ~d! after the second wiggler.

FIG. 5. Gain versus detuning, the large dip arises due to h
bunching.
e

g

e
of
-

-

-
r

e
us
f

FELWI is an order of magnitude larger. If we now compa
the peak gain for shorter wavelengths using the same wig
length, we find that FELWI demonstrates higher gain than
ordinary FEL.

IV. FREE-ELECTRON LASERS WITHOUT INVERSION
AND LIOUVILLE’S THEOREM

Liouville’s theorem@4# applies to a Hamiltonian system
such as a single particle in external electric and magn
fields or a collection of such particles with the number
particles conserved. If we consider an ensemble of such
tems in the phase space of one such system, then the de
of the systems is preserved along any trajectory of a sys
in the phase space. This theorem is applicable to individ
particles in a beam when their mutual influence can be
glected; in particular, for an ordinary FEL it is valid in th
small-gain regime. The theorem imposes some restricti
on the gain as a function of the electron energy. The aim
this part of our paper is to show that the existence of
FELWI does not violate Liouville’s theorem. Moreover, co
sidering the FELWI in terms of Liouville’s theorem gives u
some insight into how to design the drift region of a FELW

An important property of the FEL gain can be easily o
tained by applying Liouville’s theorem to the FEL as d
scribed by the pendulum equations~21!. The mean value of
detuning, and consequently of the energy, of electrons
given in terms of the phase densityf (c,V,z) by

^V&5E dcdV V f ~c,V,z!. ~50!

Let us consider a rectangular region of the pendulum ph
space, the phase being in the range (0,2p) and the detuning
in the range (2Vm ,Vm). Suppose the electrons are un
formly distributed in this rectangle at the entrance to the fi
wiggler with the distribution function

f ~c,V,0!5 f 0 , ~51!

as it is shown in Fig. 6~a!. Note that in Fig. 6 we draw only
a small but the most interesting part of the phase space
cated near the zero detuning. According to Liouville’s the
rem, the distribution function at anyt equal to that atz50,

f ~c,V,z!5 f ~c i ,V i ,0!5 f 0 , ~52!

if the initial coordinates are within our rectangle. In the lim
of Vm→` all initial coordinates will fall into the rectangle
Since the distribution function remains constant at anyz, so
does the average energy^V&. Therefore the net gain for an
infinitely wide flat distribution over the initial energies an
equivalently, the integral of gain for a monoenergetic dis
bution over the energy are equal to zero.
e

TABLE I. Peak gain for different wavelengths.

Wavelength 488 nm 244 nm 122 nm 61 n

Ratio of the FELWI
gain to the FEL gain

0.78 1.0 1.6 2.5
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The simplest way to overcome Liouville’s restriction is
introduce a drift region between two wigglers. Motion insi
the wigglers happens in the two-dimensional phase sp
(c,V), but inside the drift region the motion of the electro
is going on in the six-dimensional phase spa
(x,y,z,px ,py ,pz). After the drift region, the electrons ente
the second wiggler and acquire certain phases and detun
relative to the ponderomotive potential of the second w
gler. This amounts to the projection of the six-dimensio
phase space (x,y,z,px ,py ,pz) into a two-dimensional one
(c,V). Even though the six-dimensional phase-space d
sity is conserved, the two-dimensional projection does
have to be. These changes of the phase-space density
the possibility to have the gain for an electron beam wit
large energy spread, by a proper design of the motion in
drift region.

In the following, using a simple example, we demonstr
that the projection of the phase density in the fo
dimensional phase space (q,p,q1 ,p1), which is conserved
onto a two-dimensional space may not be conserved. C
sider the model Hamiltonian

H5p1q, ~53!

wherep1, q are the canonical momentum and position co
dinates, respectively, andt is the independent variable. The
is no physical meaning to this simple Hamiltonian, but
equivalent type of Hamiltonian can arise in the case of e
trons moving in a static magnetic field.

Our Hamiltonian leads to the set of equations

q̇50, ṗ52p1 , q̇15q, ṗ150, ~54!

the solutions of which are

FIG. 6. Snapshots of the phase-space motion (V,c), curves
correspond to the same initial detuning;~a! initial distribution of
electrons before entering wigglers;~b! after the first wiggler;~c!
after the drift region;~d! after the second wiggler; the intersectio
of curves means that the drift region in the form~47! changes the
phase density.
ce

e

gs
-
l

n-
t
ive
a
e

e
-

n-

-

c-

q5q0 , p5p02p10t, q15q101qt, p15p10,
~55!

whereq0, p0, q10, p10 label the initial position in the phas
space.

We take a specific initial distribution

P~0,q0 ,p0 ,q10,p10!5exp~2q0
22p0

22p10
2 2q10

2 ! ~56!

as the density function at timet50. One can express th
initial coordinates in terms of the current ones witht as a
parameter,

q05q, p05p1p1t, q105q12qt, p105p1 .
~57!

Using the statement of Liouville’s theorem that the pha
space density is preserved along trajectories

dP~ t,q,p,q1 ,p1!

dt
50, ~58!

we can obtain the density function at any time

P~ t,q,p,q1 ,p1!5exp@2q0
2~ t,q,p,q1 ,p1!

2p0
2~ t,q,p,q1 ,p1!2p10

2 ~ t,q,p,q1 ,p1!

2q10
2 ~ t,q,p,q1 ,p1!#. ~59!

The density projected onto a two-dimensional subspac
the phase space is the following integral:

r~ t,q,p!5E E dq1dp1P~ t,q,p,q1 ,p1!, ~60!

which amounts to

r~ t,q,p!5
p

A11t2
expS 2q22

p2

11t2D . ~61!

Obviously it is not conserved with time along the traject
ries.

Let us now show that the drift region producing the pha
shift in the form~47! does change the density in the (V,c)
phase space. At the exit from the first wiggler we will ha
basically the same rectangular region occupied by electr
but slightly distorted as it is shown in Fig. 6~b!. The drift-
region phase shift~47! leads to either an increase or a d
crease of the phase density at the entrance to the se
wiggler, as it is shown in Fig. 6~c!. Moreover, the sign of the
integral gain is clearly seen from the change of the ph
density. NearV50 there are two regions@see Figs. 6~c! and
6~d!#: one has a negative density increment and is mov
up, the other has a positive density increment and is mov
down. The net contribution to the change of the electr
detuning is negative so the gain of the FELWI is positive

Let us remark here that the phase shift in the form~48!
preserves the phase density, as can be seen from Figs. 7~a!–
7~d!, and therefore the integral of the gain over the detun
equals zero, as it has been pointed out in@12#.
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APPENDIX A: GENERALIZED MADEY’S THEOREM
FOR FELWI

Here we prove in a very general case the modification
Madey’s theorem which has been demonstrated for the
form wiggler in Eq.~45!. The proof closely follows that in
@8#, but accounts for the phase shiftDf in the drift region.
We assume the Hamiltonian to have the form

H5H0~r ,p!1V~r ,p,t,Df!. ~A1!

The phase shift happens at a fixed point and does not in
ence the evolution at other points. We assume that the
turbationV is periodic and gives zero average over a peri

First we solve the equations of motion for the unperturb
HamiltonianH0 and obtain the coordinates and the mome
depending on the initial conditions:

r05r0~r i ,pi ,t !, p05p0~r i ,pi ,t !. ~A2!

Then we make a canonical change of variables as follow

r 85r0~r ,p,t !, p85p0~r ,p,t !. ~A3!

In the new coordinates, the Hamiltonian reduces to only
perturbation part~we drop the primes for the rest of th
section!

FIG. 7. Snapshots of the phase-space motion (V,c), curves
correspond to the same initial detuning;~a! initial distribution of
electrons before entering wigglers;~b! after the first wiggler;~c!
after the drift region;~d! after the second wiggler; the phase dens
is preserved by the phase shift in the form~48!.
f-
as
us

f
i-

u-
r-
.
d
a

:

e

dr

dt
5

]V

]p
,

dp

dt
52

]V

]r
. ~A4!

The zeroth approximation is simplyr05r i and p05pi . In
the first approximation we must takeV on the zeroth-order
trajectories

dr1

dt
5

]V~r i ,pi ,t,Df!

]pi
,

dp1

dt
52

]V~r i ,pi ,t,Df!

]r i
.

~A5!

These derivatives do not apply toDf even though it might
depend on the initial coordinates via the current coordina
Hence any function of the dynamical variables can be ca
lated in this order of perturbation as

F~r ,p,t !5F~r i ,pi ,t !1
]F

]r i
r11

]F

]pi
p1 . ~A6!

Second, we apply the above formalism to a still rath
general case withz as the independent variable and t
change of the HamiltonianH→2K, V→2V. We keep the
notation r and p for the transverse coordinate and mome
tum only. Let the total length of the wiggler beL. The solu-
tions for the Hamilton equations in the first order are

r152E
0

z]V~z!

]pi
dz, ~A7!

p15E
0

z]V~z!

]r i
dz, ~A8!

t15E
0

z]V~z!

]Ei
dz, ~A9!

E152E
0

z]V~z!

]t i
dz, ~A10!

whereV(z) designatesV(r i ,pi ,t i ,Ei ,z,Df) and differentia-
tion does not apply to the implicit dependence inDf. We
estimate the workA done on the electron,

A52E
0

L]V~z!

]t
dz. ~A11!

Averaged over the phases, it is proportional to the nega
of the gain. SubstitutingA into Eq. ~A6! we arrive at

A52E
0

L]V~z!

]t i
dz2E

0

L

dzE
0

z

dzF ]2V~z!

]t i]pi

]V~z!

]r i

2
]2V~z!

]t i]r i

]V~z!

]pi
2

]2V~z!

]t i]Ei

]V~z!

]t i
1

]2V~z!

]t i
2

]V~z!

]Ei
G .

~A12!

Upon averaging over the period of oscillations~equivalently
over the injection phase of electrons! the terms which com-
pose a full derivative over time give zero. Other terms ar
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^A&52E
0

L

dzE
0

z

dzF]2V~z!

]t i]pi

]V~z!

]r i
1

]2V~z!

]t i]pi

]V~z!

]r i

2
]2V~z!

]t i]Ei

]V~z!

]t i
2

]2V~z!

]t i]Ei

]V~z!

]t i
G . ~A13!

Restoring the dynamical variables~A7!–~A10! and perform-
ing the integration overz, we arrive at our modified Madey’s
theorem where partial derivatives do not apply toDf,

^A&[^E2&5 K E1~Ei ,pi ,Df!
]E1~Ei ,pi ,Df!

]Ei

1p1~Ei ,pi ,Df!
]E1~Ei ,pi ,Df!

]pi
L .

~A14!

This general theorem gives Eq.~45! for the case of the FEL
This can be shown either by expressing the detuningV from
Eq. ~17! via the energyE and the momentump, or by di-
rectly applying Eq.~A14! to the pendulum Hamiltonian~23!.

APPENDIX B: IMPLEMENTATION OF THE PHASE
DELAY IN THE DRIFT REGION

In the previous sections we have shown that there is
contradiction to the general theorems if we have a drift
gion providing the phase shift in the form~47!. The aim of
this appendix is to show that such a drift region could
designed in principle. The recent progress in electron mic
copy@15# gives us a clue how we can use optical elements
analogs for electron optics@15#. Our efforts are devoted to
the demonstration of the ‘‘optical analog’’ of the drift regio
as a proof of principle for the existence of such a type of d
region.

Below, we present the design by means of elect
‘‘prisms,’’ and electron ‘‘plates’’ which are acting almost i
the same way as prisms and plates in optics. An electro
prism deflects electrons by some angle which depends on
velocity of the electron~which is an effect similar to disper
sion in optics!. An electron plate is a region where electro
are delayed for some additional time. Both prisms and pla
can be designed by means of some region in space
magnetic fields in a way analogous to an electron lens.

In Fig. 8, we present a scheme of the drift region. T
can be divided into three parts: a splitter, a kink region, a
a collector. The splitter~a combination of prisms 1 and 2! is
a part of the drift region which sorts electrons according
their detunings and arranges their motion in the next stag

FIG. 8. The optical analog of the drift region.
o
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the drift region, the so-called kink region. The electron be
leaving the first wiggler enters the splitter. Prism 1 defle
it, also providing, due to dispersion, spatial separation of
electrons according to thevz component of their velocity.
Then the electrons pass through prism 2, their velocities
come parallel, and the phase shift of any electron will depe
on the path along which the electron passed inside the s
ter.

The second stage~the kink region! is a part producing the
largest possible phase shift by letting electrons travel thro
this space. In addition, it addsp to the phase shift in the cas
of a negative detuning. The relative phase shift, in comp
son with the resonant electrons, depends on the distance
tween the prisms and the angle between them.

The last part~a combination of prisms 3 and 4! simply
collects the electrons in the beam in order to enter the sec
wiggler. The collector has the action reverse to that o
splitter.

The phase shiftDf created by the drift region is given b

Df5nS Le

ve
2

Ln

c D , ~B1!

whereLe andLn are path lengths being passed by electro
and light, respectively,ve is the velocity of an electron, and
n is the frequency of the light beam. Now it is easy to che
that this drift region produces the phase shift we need
FELWI. The path length traveled by the electron is

Le5Le
o1dL, ~B2!

where

dL52RdaeS 12cosa r

cos2a r~ tan up1tan a r !
2tan a r D ~B3!

is the path difference for an electron deflected by the an
dae from the trajectory of resonant electron,R is the path
distance of resonant electron passing between prism 1
prism 2,ae is the deflection angle of the electron, andup is
the angle between prism 2 and the axis of the system. F
small deviation from the resonant velocityv r we have

dae5
]ae

]ve
~ve2v r !, dL5L~ve2v r !;V, ~B4!

and finally the phase shift has the form

Df5nS Le
o

v r
2

Ln

c D 1nSL2
Le

o

v r
D ve2v r

v r
. ~B5!

Adjusting some parameters of the drift region~for example
Le

o , u, ]ae /]ve) we can transform the phase shift into th
form we need for FELWI, namely,

Df5Df02LWV. ~B6!

The possibility to do this meets the condition

L,
Le

o

v r
. ~B7!
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At this stage we have a phase-shift derivative over
detuning as we wanted to, and the last task is to crea
kink-type phase shift~47!. This can be easily done by intro
ducing a plate inside the kink region, so that the electr
having negative detuning may pass through this plate ad
the p phase shift, but others avoiding it adding no sh
~therefore the name being ‘‘kink region’’!. Thus we succeed
in designing the right phase shift in its dependence on
electron detuning at theexit from the first wiggler; but for
FELWI we need to design a drift region as a function of t
detuning at theentranceof the first wiggler. To achieve this
we need a kind of ‘‘fate teller’’ which should tell us what ha
been the detuning of the electron before the interaction in
the first wiggler.

As was shown in@11#, this task can be performed b
tilting the laser beam relative to the wiggler through an an
.

n
,

.

,

n.

-
.

p.
e
a

s
ng
t

e

e

e

uW . This oblique light propagation gives rise to an electr
motion in the (x,z) plane. Knowing that the trajectories i
the (vx ,vz) plane are straight lines with a slopeg2uW rela-
tive to thevz axis we can determine the entrance detuning
an electron by resolving this electron motion in the (vx ,vz)
plane. The splitter transforms this motion from the (vx ,vz)
plane into the (x,y) plane. The last problem therefore re
duces to a proper adjustment of the plate inside the k
region. To solve it we should rotate the plate by the ang

tan Q5g2
up

]ae /]ve
~B8!

around thez axis to add the phasep for negative initial
detunings.
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