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The small-gain regime of free-electron laséf&L) without inversion is considered and seeming contradic-
tions with the traditional theory of FEL are resolved. As a result, a generalized Madey’s theorem is obtained
for the case of a phase shift given to electrons between the two wigglers. It explicitly demonstrates the
contribution of interference of radiation from the wigglers. It is shown, by considering the motion in the phase
space, that Liouville’s theorem applied to the motion of electrons in a two-dimensimthkr than one-
dimensional real space is consistent with a nonzero integral of the gain over electron energies. These conclu-
sions are crucial for the achievement of orders-of-magnitude improvement in the FEL gain in the case of a
large electron energy spred&1063-651X98)03203-9

PACS numbefs): 41.60.Cr, 42.25.Hz, 03.28i

[. INTRODUCTION dimensional motion of the electrofiS]. This property of the
FEL gain leads in the presence of a wide energy spread of
Free-electron laserFEL) [1] use the kinetic energy of electrons to a fast decrea@aster than in the case of Doppler
relativistic electrons moving through a spatially modulatedbroadening in atomic lasersf the gain. Since the relative
magnetic field(wiggler) to produce coherent radiation. The Width of gain as a function of the electron energy decreases
frequency of radiation is determined by the energy of elecWith the laser wavelength, it is one of the major obstacles on
trons and the spatial period of the magnetic field. This perihe® way to short-wavelength FELs.

mits tuning a FEL in a broad range unlike atomic or molecu- R%centljy new ap?roachﬁs to increa(:jsi.n% g:lin in atﬁmic La'
lar lasers. Therefore for the purposes of achievement ofc'> as;G]o_r:_r?_uan um c;)lergnce ‘m T'er ergncehavg een
short-wavelength lasers, it is important to consider possibl({?r()po.Se o]. 1NIS concept, 1asing without nversion, has in-
limitations of the FEL gain eresting implications for the FEL as well, I_eadlng. to a new
o . . type of FEL[7], the free-electron laser without inversion
For the case of a small-gain and a small-signal regim

. . o 2 ., (FELWI). The FELWI i lly impl
(i.e., laser intensity is much less than the saturation mt@nsn? ) © is conceptually implemented via in

; o Yerference of the radiation from two wigglers and an appro-
Madey has proved a theoreff], which greatly simplifies priate phasing of the electrons in the static magnetic field of

the calculation of the FEL gain. Some generalizations of thighe grift region between the wigglers. The static magnetic
theorem have been fouri@]. The statement of the theorem fje|q deflects the electrons to angles depending on their ve-

is that the FEL gain is proportional to the derivative of the|gcities so that the electrons travel along different paths and
power of spontaneous emission when both are considered ascounter different phases of the laser field in the second
functions of the injected electron energy, wiggler. Electrons having smaller velocities than the phase

velocity of the ponderomotive potential are given an addi-

gain= ——spontaneous emission. (1) tional phase shl_ft ofr via |nhomoggne|ty of magngnc flelq.

dé; As a result, the integral of the gain is nonzero. This promises

o . . o a much higher gain for short-wavelength FELs, but at the

This immediately imposes the restriction that same time seems to contradict some well-established notions

of the FEL theory. The aim of this paper is to resolve these

LR tradictions by explicitly demonstrating how modified ver-

gain d&=0, (2 con y explicity . g ho
—w sions of the conventional reasoning are applicable to FELWI,

and thereby to support the possibility of a practical imple-
since spontaneous emission turns to zero both at very higientation of FELWI schemes.
and very low injected energies. In Sec. Il the equations of motion for FELs are derived for
Liouville’'s theorem[4], which is valid for Hamiltonian further reference. In Sec. Il the modified Madey theorem is
dynamical systems, states that the density of noninteractingjustrated for the case of uniform wigglers, and the numeri-
particles in the one-particle phase space is conserved alongl as well as analytical results for FELWI are discussed.
their trajectories. This leads to the same conclug®)rof a  The theorem is proved for the general case in Appendix A.
vanishing gain integral in the case of an effectively one-Section IV shows how a consistent application of Liouville’s
theorem allows us to avoid contradictions with the FELWI
results. And finally, the ways to implement the phase delay
*Present address: Department of Electrical and Computer Engf electrons in the drift region between the wigglers in
neering, University of California, Santa Barbara, California 93106-order to achieve necessary interference are discussed in
9560. Electronic address: dmitri@quantum.ece.ucsb.edu Appendix B.
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FIG. 1. The setup of FELWI: two wigglers and a drift region
between themk, andk,, are the wave vectors for laser field and
wiggler field, respectively.

II. EQUATIONS OF MOTION FOR FEL

The classical dynamics of electrons in the FEL can b
representedwe disregard the scalar potenjialy the Hamil-
tonian[8]

H=E&=ymc=c(p—eA)>+m?c?,

wherem ande are the mass and the charge of the electton,
is the speed of lightyy is referred to as the Lorenz factor
related to the energ§, p is the canonical momentum, aid

is the vector potential of the combined electromagnetic fiel
of the wiggler(designated by a subscrip¥) which is ori-
ented along the axis, and the laser fieldesignated by a
subscriptL) which propagates at an angderelative to the

)

axis of the wiggler, as is shown in Fig. 1. For the uniform

wiggler the vector potential has the form
A=2y[Ay cogkyz) +A, cogk,z+kx—vt+ )], (4)

whereck,= v cos6 andck,= v sin 6. Both fields have only

ay component is the phase of the laser field at the mo-
ment when the electron enters the wiggler. Let us remark that

we have neglected the spatial variation of the laser fiatd
we restrict our consideration to the small-gain regirsieni-
larly to [1].

Since the interaction in a FEL happens within fixed spa-

tial coordinates, it is more convenient to take theoordi-

nate rather thah as the independent variable. This leads to a

canonical transformatiosee[8] for detail9 with the new
Hamiltonian—IC,

52
K=p,=eA+\/5—(p.—eA)’-m’c?, (5
C
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dy K —eh

== 9
dz apy o8 ©)
dx I py

—=— =, 10
az~ ap, bl 10
dt ok €& 11
a2 E e an

Here we takep,(0)=0 and thereforep,(z)=0 for all z.
This allows us from now on to take the wiggler motion in the

ey direction out of consideration for the purposes of calculat-

ing gain.

The right side of Eq(7) contains, among other terms, the
“ponderomotive” (wiggler plus radiation field which
propagates along the direction with the phase velocity,
= vl/q,<c, whereq,=k,+ky, . The electrons having veloci-
ties close to the resonant velocity interact with this field
most efficiently. We retain only these teritan analog of the
rotating wave approximation, s¢8]) and neglect the other
erms having fast oscillation in the electron reference frame.

his results in the proportionality of the energy change to the
change of momentum for each electron in each act of photon
absorption or emission:

&
=N sin(q,z+ K, x— vt+ ¢),

FER 12
Ne 2e2vAWA, | 13
Pz

Let us introduce the phasg relative to the ponderomo-
tive potential as

=q,z+ Kk x—vt+ ¢, (16
and let us call “detuning” thez derivative of
0o c dx dt 1
=0t Xd_Z_ Vd_Z’ (17)

wherep, and A, are the transverse momentum and the

transverse vector potential, respectively. Now titvend en-

since atz=0 it is proportional to the difference of the elec-

ergy & play the role of a conjugate coordinate and momeny o, velocity from the resonant velocity . Finally, with the

tum. Thus the equations of motion are as follows:

dp, JK

E_W_O’ (6)
dp, ok € 4 A .
Az~ ax poxl2) @)
d¢ ok e 9(A]
—=——=——=, (8
dz at  p,at\ 2

help of the equations of motiofr)—(11), the second deriva-
tives of the coordinates can be expressed via the derivative of
energy p,, being of the first order in the laser field, is ne-
glected in comparison witp,)

d’t 1 ( ng)de 18
dz? p,c? vp,) dz’
d>  ky d€ 19
dz2 prdz



3446 NIKONOV, ROSTOVTSEV, AND SIBSMANN 57

Thus we obtain the equation onstrate the traditional and our modified Madey’s theorems.
We will look for the solution of Eqs(21) in the form of a
dQ 1 ( ) qf dé 20 perturbation series in the amplitude of the laser field:
—=—| K+ = |5
dz. por| " y7)dz 0(2)=0o(2)+a0,(2) +a20x(2) +-++, (24
Therefore in terms of variables/({)) the dynamics of an _ _ R 2
electron is expressed by the pendulum equations W(2)=yo(2)=ay1(2) : (25
dy where the initial conditions state that electrons start with the
d_z:Q' phase¢ and the injected detuning,;,
dQ Qo(0)=9Q;,  0o(0)= 9, (26)
——=a sin ¢, (21
dz 0,(0)=0, ¥,(0)=0, n>0. 27
where the coupling constant The set of the equations becomes
2\ 5,2
q; | 2e*AyA d
a=(k§+ ===, (22 —0y=0, (28)
Yr P dz

is proportional to the laser field amplitude and will be used
as the perturbation parameter. Equati¢2® are associated d_z'//OZQOv (29)
with the reducedone-dimensionalHamiltonian

d

2 .

H(p, Q)= %+a cos i, 23 dza=sin vo, (30
which is the nonrelativistic Hamiltonian of an electron in the ilﬁl:Ql' (31)
reference frame of the ponderomotive potenfid]. The dz

dynamics of electrons inside the wiggler is effectively one

dimensional in spite of the two-dimensional motiGn the EQ — U COS (32
x-z plane caused by the oblique propagation of laser field. dz™"? g Yo

These equations are the basis of our consideration of uniform _ _ _ _

wigglers. In the ultrarelativistic limit, small changes of the ~ Consider first a one-section wiggler of lendth,. Inte-
energy, momentum, detuning, and velocity are proportiona@rating Eqs(28)—(32), we directly obtain

to each other, so in order to calculate the gain we will need to ) )

calculate the change in the average detuning of the electrons. :2 sinQ2;2/2)sin (22/2) + ¢]

1 0, , (33
ll. SMALL-GAIN REGIME OF FELWI
. . ) 0,z cog @) +sin p—sin(Q;z+ ¢)
Here we apply the equations derived in Sec. Il to the P1= > , (34
electron motion in one and two uniform wigglers and dem- Q
|
—4—c0S 2+ 4 cosQ;z—cos 20,z+ ¢) +2Q0;z sin Q;z+ 20,z sin(2¢+,;2)
92: 3 . (35)
4Q;
|
Electrons are injected with random phases. Averaging over spontaneous emissigiV=(Q3). (37

the phasep cancels the contribution to the gain in the first

order. In the second order it yields . . ) )
The above solution gives for the one-section wiggler

2-2 CO$QiLw) _QiLW Sln(Q,Lw)
203

gainx —(Q;)=

. 5
sm(Q,LWIZ)) . 39

W|(Qi):< 0,

(36)

It can be showri8] that the spontaneous emission powerThe same result can be obtained from the quantum theory of
from the electrons is proportional to the square of the energf¥EL. Comparing Eq(36) and Eq.(38), we explicitly see a
change(which we take in the first order of perturbatjon manifestation of Madey’s theorem:
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d wigglers the electrons can be given a velocity-dependent
gaire —(Q,)=— m(ﬂi(ﬂi)% (39 shift A¢ of their phase relative to the ponderomotive poten-
: tial. To achieve a positive integral of the gain over detuning
[11] we design the drift region so that the phase shift de-
in other words, the gain is proportional to the derivative ofpends on the electrons’ injected velocity, and consequently
the spontaneous emission spectrum. Let us suppose now thgi Q) .
we have a two-section wiggler, with the second section being A calculation similar to the one above gives for the cor-
identical to the first. In the drift region between the two responding values at the exit from the second wiggler

Q _cos{QiLW+ ¢+Ad)—cogp+Q,Ly)+cosdp—cogQ,z+ P+ Ap)
1= Qi ’

1=[Q,zcos p+Q;Ly cog P+ QL) —Qiz cogdp+QiLyw) — QiLyw COSA P+ p+ QL) +Q;z coOgA P+ d+ QL)
+5sin ¢p—sin(p+QiLy) +SINA b+ ¢+ QL) —SiN(Ap+ ¢+ Q,2)]/Q?,
Q,={—8+4 cosA¢—cos 2p+4 cosQ;Ly+4 coddi(Ly—2z)—4 cogAd+QiLy) +cos 2+ QiLy)
—cosZAp+ p+QiLy)+4 cosAdp+Q;z)+cos AA P+ dp+Q,2) —4 co$Adp+ QiL(z—Lw)]+2Q,Ly sin(QiLy)
+20Q,Ly sin Qi (Ly—2)—2Q,z sin Q;(Ly—2)—2Q,Ly SiNAd+ QL)
+2QiLy Sin(2¢+QiLyw) —2Q;Ly Si(Ap+2¢d+ QL) +2Q;z Si(Ap+Q2) + 20,z SINAPp+2¢+Q;2)
+2Q;Lyw SifAP+Q,(z—Lyw)]—20,zsiMAdp+Qi(z— L) ] +2Q;Ly SIMAP+2¢d+ Qi (Lt 2)]
—20;zsSiMAP+2¢+Qi(Lywt2)]—2Q;Ly SIN2Ap+2¢+Qi(Lw+2)]+20,z SIN2Ap+2¢+ Qi (L
+2)1}(40Q7).
Averaging over the initial phase yields
gainc —(Q,)=—{—4+2cosA¢+2 cosQ;Ly+2 cosQ;(Ly—2)—2 cos(A¢p+Q;Ly)+2 cogA¢+Q,;2)
—2c03Ap+Q(z—Lyw) ]+ QiLyw sin(QLy)+ QL sin Q;(Ly—2)—Q,z sin Q;(Ly—2)
—QiLy SiNA G+ QiLy) +Qiz SiNAd+Q,2)+ QiLy SiITA S+ Qi (z— L) ]
+Qiz siMA¢+Qi(z—Lw) 1M (203). (40)

Obviously, for zeroA ¢ the two-wiggler gain coincides with Wi (©Q;,48)=(0Q5(Q;,A¢)). (44
the result for the one-section wiggler of twice the length.

Spontaneous emission can be most readily estimated agyain by comparing Eq40) and Eq.(43) we explicitly see
the intensity of the superposition of radiation form the firstthe relation
(E41) and the secondH,) wiggler. Each wiggler separately

givesW,~|E, 42, and together _ i
| gaire —(Q)=— (0} .A¢), (45
W ~[E 4|2+ |Eo|?+2|E4||E|cos ¢, (41 l
where the partial derivative means that the differentiation
where does not affectA ¢ even though it depends on the initial
detuning. We prove this modified Madey theorem for a more
e=0,;TywtA¢ (42)  general class of interaction Hamiltonians.

The modified Madey theorem can also be expressed in the

is the difference between the phase of the same electron fAuivalent form
the two wigglers. Thus

1 d
¢ gain* —(22) =~ 3 5, ()
WII(QiuA¢):4W|(Qi)C032§. (43)
Ao

J
+<91(Lw)_91(2|-w) - (46)

J
The same result can be obtained by directly evaluating i 297
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- tically a monoenergetic electron beam exiting the FELWI.
QG0) ™~ (© \/ (d As a result, the gain for negative detunings is zero. For posi-
tive detunings, the evolution in the second wiggler is similar
to that in the first wiggler: the electrons continue to lése
Q(<0) <N gain) energy in the second wiggler, if they were losifrg-
v v spectively, gainingenergy in the first. This results in a cer-

tain gain for the laser field.

In Fig. 3 we compare the gain curves for an ordinary FEL
with that of a FELWI. Clearly, the integral of the FELWI
gain over all detunings is positive, in contrast to an ordinary
FEL having a zero integral. In an ordinary FEL the majority
Here, the first term represents the usual contribution to th@f the electrons must have positive detunings to provide a net
gain, whereas the second term is a contribution due to inteigain, which can be defined as inversion. FELWI does not
ference. This relation can be regarded as a modification diave to satisfy this condition, which gives another justifica-
Madey’s theorem to include interference. The integral oftion for this term.
gain for a one-section wiggléB9) over detunings has to be ~ We emphasize the importance of the drift region design to
zero, since it contains only a full derivative. However, theproduce the phase shift which depends on the detuning at the
integral of gain for a two-section wiggléé5) can be non- entrance to first wiggler rather than at the exit from the first
zero, if the phase shifh ¢ in the interference term is prop- Wiggler. Phase trajectories demonstrate this most clearly.
erly chosen. This crucial difference opens new possibilitiesSuppose that instead of the phase stff) we have a dif-
for building a new type of free-electron lasers having largeiferent one,
gain and being more tolerant to spread of electrons.

FIG. 2. Snapshots of the phase-space mot@ny); (a) initial
distribution of electrons before entering wigglefls) after the first
wiggler; (c) after the drift regionjd) after the second wiggler.

To demonstrate such a possibility we set m—Qly, Q<0
Ap= (48)
-QLy, Q>0
W_QLw, Q|<O
Ad= —QLy, Q>0 “7) where() stands for the electron detuning at the exit from the

first wiggler (rather than(}); at the entrance to the first wig-

and find that the gain vanishes exactly foy<0, and itis  glen.
positive almost everywhere fd2;>0. This is accompanied Then there is a region near zero detunjtg] where the
by a cancellation of spontaneous emissions for negative dgghase shift causes a qualitative change in the phase-space
tunings. distribution. Figures é&)—4(d) demonstrate this case f6l;

Considering electron trajectories in the phase space of the 0. In previous cases the contribution of the electrons losing
pendulum, i.e., the planey( (1), can help us obtain some energy was, to the first order of perturbation, canceled by the
physical insight into the previous results. In Figéa)22(d) contribution of the electrons gaining energy, and the net gain
we present a number of snapshots of the evolution in phaser loss depended on the violation of this balance in the sec-
space of a monoenergetic electron beam traveling througbnd order of perturbation. In the case of E48) this can-
the FELWI. In Fig. Za), we see electrons entering the first cellation still exists in the first wiggler, but in the second
wiggler with various phases and the same detuning. In theviggler all the electrons gain energy, so some loss exists
first wiggler the electron dynamics depends on their initialeven in the first order of perturbation. This explains the sharp
phases: some of the electrons lose energy but the others gaabsorption dip in Fig. 5 near zero detuning. We would like to
energy[see Fig. 20)]. Then the electrons enter the drift re- note here that this result is in agreement witt2], where
gion where, traveling in the static magnetic field, theyone-dimensional motion has also been analyzed and it is
change their phases relative to the ponderomotive potentiahown that FELWI is not possible for this case. We argue in
but do not change their ener¢gnd thus their detuningThe  the next section that an essentially two-dimensional motion
change of phase is expressed by Etf) and is determined of electrons between the wiggler is required to implement the
by their initial detuningrather than the detuning at the exit phase shift{47).
from the first wiggler. The electrons with negative detuning The other result of our consideration of electron trajecto-
reverse their motion inside the second wiggler. It is clearlyries is that in the last case an extraordinarily high bunching
seen from Fig. @) that for negative detuning we have prac- of electrons takes place for the phase s@#B). This fact is
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(@) (b) TABLE |. Peak gain for different wavelengths.
Wavelength 488 nm 244 nm 122 nm 61 nm
Q=0
Ratio of the FELWI 0.78 1.0 1.6 2.5
) gain to the FEL gain
v Sy
wiggler | wiggler Il
IN[SIN[S[N] ./~ [SIN[SIN[S FELWI is an order of magnitude larger. If we now compare
e-beal>;w/’vz<v I~~~ the peak ga_in for shorter wavelengths using the same wiggler
v length, we find that FELWI demonstrates higher gain than an
SIN[SIN[S| /. [N[SIN]S[N]* ordinary FEL.
V>V
(c) (d IV. FREE-ELECTRON LASERS WITHOUT INVERSION
AND LIOUVILLE'S THEOREM
Q=0 Liouville’s theorem[4] applies to a Hamiltonian system
such as a single particle in external electric and magnetic
v v fields or a collection of such particles with the number of

particles conserved. If we consider an ensemble of such sys-
FIG. 4. Snapshots of the phase-space motan/), for Q;=0  tems in the phase space of one such system, then the density
and phase shift in the forit#8); (a) initial distribution of electrons  of the systems is preserved along any trajectory of a system
before entering wigglergh) after the first wiggler(c) after the drift  in the phase space. This theorem is applicable to individual
region; (d) after the second wiggler. particles in a beam when their mutual influence can be ne-
glected; in particular, for an ordinary FEL it is valid in the
very important for the dynamics of the laser field in the small-gain regime. The theorem imposes some restrictions
large-gain regime. However, this is beyond the scope of then the gain as a function of the electron energy. The aim of
present paper and we plan to consider it in the fufd&. this part of our paper is to show that the existence of the
The integral gain can be increased even further by varyingFELWI does not violate Liouville’s theorem. Moreover, con-
the parameters of the phase-shift functitegp for the drift  sidering the FELWI in terms of Liouville’s theorem gives us

region: some insight into how to design the drift region of a FELWI.
An important property of the FEL gain can be easily ob-
a+B—yQLy, ;<0 tained by applying Liouville’s theorem to the FEL as de-

Ap= B—yQLy, Q>0 (49 scribed by the pendulum equatiof&l). The mean value of

detuning, and consequently of the energy, of electrons is

By adjusting thea, B, y parameters it is possible not only given in terms of the phase densitgy),(2,z) by

to cancel absorption, but also to create gain for negative

detunings. The peak gain higher than that of a usual FEL of <Q>:J dydQ Q f(4,Q,2). (50)

the same total length can be achieved in a FELWI by wig-

glers with different lengths. But even without this optimiza- i )

tion we are able to compare our FELWI gain with that ex- Let us consider a rec_:tan_gular region of the pendulum_phase
perimentally obtained ifil4]. Using the parameters ¢14]  SPace, the phase being in the range £0,2nd the detuning
(energy of electrons is 1474 MeV, energy spread N the range ¢ Q,,,Q,). Suppose the electrons are uni-
6.5x104 transverse dimensions 0.26 and 0.15 mm magformly distributed in this rectangle at the entrance to the first
netic field amplitude 4.0 kG, magnetic period 4 cm, numberViggler with the distribution function

of periods 23 we calculate the peak gain for different wave- _

lengths, see Table I. The peak gains of FEL and FELWI are f(4,Q,0=fo, (5D

of the same order of magnitude because the inhomogeneous

broadening is relatively small, while the average gain of2S It iS shown in Fig. @). Note that in Fig. 6 we draw only
a small but the most interesting part of the phase space lo-

cated near the zero detuning. According to Liouville’s theo-
rem, the distribution function at artyequal to that az=0,

0.025

f(4,Q,2)=1(4;,0;,00=f,, (52

Gain

-0.05

if the initial coordinates are within our rectangle. In the limit
of Q,,— all initial coordinates will fall into the rectangle.
-10 10 Since the distribution function remains constant at ango
Detuning (Q Ly) does the average energf2). Therefore the net gain for an
infinitely wide flat distribution over the initial energies and,
FIG. 5. Gain versus detuning, the large dip arises due to hugequivalently, the integral of gain for a monoenergetic distri-
bunching. bution over the energy are equal to zero.
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(a) (b) d=0o, P=Po— P, 01=010tAt, P1=P1o0;
(55)
Q /\/ wheredo, Po, di0, P1o label the initial position in the phase
space.
v . v We take a specific initial distribution
wiggler | wiggler Il s s o
INSIN[SIN] .~ [SINIS[N[S P(0,do,Po,d10,P10) =EXN — 05— P5—Pio—d1o) (56)
e-beam ey
— Wvaé as the density function at time=0. One can express the
SIN[S[N[S /" [N] SIN[S|NJ*, initial coordinates in terms of the current ones witlas a
Vz >V parameter,
c
(© (d 0o=0, Po=pP+Ppit, d10=0:1—qt, P1=P:.
(57)
Q . . .
Using the statement of Liouville’s theorem that the phase-
v v space density is preserved along trajectories
FIG. 6. Snapshots of the phase-space motifn), curves dP(t,9,p,91,P1) =0 (59)
correspond to the same initial detunin@) initial distribution of dt '

electrons before entering wigglerd)) after the first wiggler;(c)
after the drift regionyd) after the second wiggler; the intersection we can obtain the density function at any time
of curves means that the drift region in the fof#v) changes the

phase denSity' P(t1q1 p1q11p1) = exn: - qg(tqupaql ’ pl)

The simplest way to overcome Liouville’s restriction is to —P5(t,9,P,01.,P1) — P3o(t,0. .01, P1)
introduce a drift region between two wigglers. Motion inside g2yt ) (59
the wigglers happens in the two-dimensional phase space A1t 4P 91.P1) J-
(¢,Q), but inside the drift region the motion of the electrons
is going on in the six-dimensional phase space,
(X,¥,Z,px, Py, P;). After the drift region, the electrons enter
the second wiggler and acquire certain phases and detunings
relative _to the ponderomotive_ po_tential of thg sgcond.wig- p(t,q,p)zj f dq,dp;P(t,9,p,q1,P1), (60)
gler. This amounts to the projection of the six-dimensional
phase spacex(y,z,py,py,p;) into a two-dimensional one
(¢,Q). Even though the six-dimensional phase-space de

The density projected onto a two-dimensional subspace of
he phase space is the following integral:

Awhich amounts to

sity is conserved, the two-dimensional projection does not )

have to be. These changes of the phase-space density give p(t,q,p) = exp( . p ) 61)
the possibility to have the gain for an electron beam with a v J1+t2 1+12)°

large energy spread, by a proper design of the motion in the

drift region. Obviously it is not conserved with time along the trajecto-

In the following, using a simple example, we demonstrateijes.
that the projection of the phase density in the four- [etus now show that the drift region producing the phase
dimensional phase space,f,d:,ps1), Which is conserved, shift in the form(47) does change the density in th® ()
onto a two-dimensional space may not be conserved. Corlphase space. At the exit from the first wiggler we will have

sider the model Hamiltonian basically the same rectangular region occupied by electrons
but slightly distorted as it is shown in Fig(l§. The drift-
H=p.q, (530  region phase shift47) leads to either an increase or a de-

crease of the phase density at the entrance to the second

wherep,, q are the canonical momentum and position coor-Viggler, as itis shown in Fig.(6). Moreover, the sign of the
dinates, respectively, arids the independent variable. There integral gain is clearly seen from the change of the phase
is no physical meaning to this simple Hamiltonian, but andensity. Nea©2=0 there are two regior{see Figs. &) and
equivalent type of Hamiltonian can arise in the case of elec®(d]: one has a negative density increment and is moving
trons moving in a static magnetic field. up, the other has a positive density increment and is moving
down. The net contribution to the change of the electron
detuning is negative so the gain of the FELWI is positive.
) } : . Let us remark here that the phase shift in the fqr8)
q=0, p=-p1, d1=d, Pp1=0, (54 preserves the phase density, as can be seen from Fays. 7
7(d), and therefore the integral of the gain over the detuning
the solutions of which are equals zero, as it has been pointed ouftli].

Our Hamiltonian leads to the set of equations
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() (b) drgv dp oV "
. //\ a = 3_[3 , a = W ( )
f/\ The zeroth approximation is simplgy=r; and py=p;. In
the first approximation we must také on the zeroth-order
v A4 trajectories
‘ wiggler | /7 wiggler Il
\ [N[SIN[SIN] ~* [SIN[SIN[S dry _dV(ri,pi,t,A¢)  dpy _ V(ri,pi,tA¢)
e-beaL\\/W\/va W\e dt r?p, ! dt (9ri '
s|N|s|N|sVN|s|N|s|N\ (A5)
padd s These derivatives do not apply to¢ even though it might
© (d‘ depend on the initial coordinates via the current coordinates.
//\ Hence any function of the dynamical variables can be calcu-
Q - lated in this order of perturbation as
N
\/ F t)=F t)+ " + o* A6
v v (r,p,t)=F(ri,p;,t) 07_rir1 &_pipl' (A6)
FIG. 7. Snapshots of the phase-space motith), curves Second, we apply the above formalism to a still rather

correspond to the same initial detunin@) initial distribution of general case witlz as the independent variable and the
electrons b_efore. entering wiggleréy) after_ the first wiggler;(c) _ change of the Hamiltoniahl — — K, V— — V. We keep the
fs\fter the drift region(d) after th_e _second wiggler; the phase density otationr andp for the transverse coordinate and momen-
is preserved by the phase shift in the fof4g). tum only. Let the total length of the wiggler the The solu-
tions for the Hamilton equations in the first order are
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APPENDIX A: GENERALIZED MADEY’S THEOREM 0 i
FOR FELWI MO
z
Here we prove in a very general case the modification of &=~ fOTdé’, (A10)
I

Madey’s theorem which has been demonstrated for the uni-

form wiggler in Eq.(45). The proof closely follows that in wh ; . .
; . ) ereV({) designates/(r; ,p; .t ,& ¢, A¢) and differentia-
\[;\3/]’ but aﬁqco,t"hntsl_rorrntinen?hﬁie rs]l Vﬂvﬁﬁt;]n tfhem?”ft r€gIoN.  tion does not apply to the implicit dependenceAip. We
€ asstume the Hamiltonian to have the 1o estimate the work4 done on the electron,

LoV(z)
A== fo ot

H=Hy(r,p) +V(r,p,t,A ). (A1)

dz (Al
The phase shift happens at a fixed point and does not influ-

ence the evolution at other points. We assume that the per- o i )
turbationV is periodic and gives zero average over a periodAveraged over the phases, it is proportional to the negative

First we solve the equations of motion for the unperturbec®f the gain. Substitutingd into Eq. (A6) we arrive at
HamiltonianH, and obtain the coordinates and the momenta L2 )
. O - ZOO . ,
depending on the initial conditions: A= _f . dz—f dzf dz
o 4t o Jo

*W(2) Q)
at; dp; ar;

rozro(ri,pi,t), pO:pO(ri=pi vt) (AZ)

PWVz) o) PWVz) V() PW(z) V(L)
©ogtar, dp; dtdE ot a2 o0& |

r'=ro(r,p,t), p" =po(r,p,t). (A3) (A12)

Then we make a canonical change of variables as follows:

In the new coordinates, the Hamiltonian reduces to only théJpon averaging over the period of oscillatio@gjuivalently
perturbation partfwe drop the primes for the rest of this over the injection phase of electrortbe terms which com-
section pose a full derivative over time give zero. Other terms are
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3 the drift region, the so-called kink region. The electron beam
leaving the first wiggler enters the splitter. Prism 1 deflects
_______ it, also providing, due to dispersion, spatial separation of the
N electrons according to the, component of their velocity.
............... N\ Then the electrons pass through prism 2, their velocities be-
RN come parallel, and the phase shift of any electron will depend
on the path along which the electron passed inside the split-
E-beam ter.
The second stagghe kink region is a part producing the
largest possible phase shift by letting electrons travel through

P E .

FIG. 8. The optical analog of the drift region. this space. In addition, it adds to the phase shift in the case
of a negative detuning. The relative phase shift, in compari-
L z [0®W(z) V(&) V(L) aV(2) son with the resonant electrons, depends on the distance be-
(A=~ fo dzfodg atop or | atap o, tween the prisms and the angle between them.

The last part(a combination of prisms 3 and) 4imply
collects the electrons in the beam in order to enter the second

P*V(z) V) PV(L) d(2)
(A13)  wiggler. The collector has the action reverse to that of a

COOtoE ot ataE

splitter.
Restoring the dynamical variabléa7)—(A10) and perform- The phase shif ¢ created by the drift region is given by
ing the integration ovez, we arrive at our modified Madey’s
theorem where partial derivatives do not applyAte, Ap= V(E _ ﬁ ' (B1)
ve C
. ﬁgl(gl Y 1A¢) i
(Ay=(E) =1 &u(& i AP)—— wherel, andL, are path lengths being passed by electrons
' and light, respectivelyy is the velocity of an electron, and
IEL(E piAd) v is the frequency of the light beam. Now it is easy to check
+p1(&i P 1A¢)(9—p>' that this drift region produces the phase shift we need for
' FELWI. The path length traveled by the electron is
(A14)
. . Le= Lg+ oL, (B2)
This general theorem gives E@5) for the case of the FEL.
This can be shown either by expressing the detufinfgom  \yhere
Eq. (17) via the energy¢ and the momentunp, or by di-
rectly applying Eq(A14) to the pendulum Hamiltonia(23). 1-cosa,
SL=2Rba, —tana,| (B3)

APPENDIX B: IMPLEMENTATION OF THE PHASE cos'a,(tan 6, + tan a)

DELAY IN THE DRIFT REGION is the path difference for an electron deflected by the angle

In the previous sections we have shown that there is n@@. from the trajectory of resonant electroR, is the path
contradiction to the general theorems if we have a drift re-distance of resonant electron passing between prism 1 and
gion providing the phase shift in the ford7). The aim of ~ Prism 2,a. is the deflection angle of the electron, afidis
this appendix is to show that such a drift region could bethe angle between prism 2 and the axis of the system. For a
designed in principle. The recent progress in electron microssmall deviation from the resonant velocity we have
copy[15] gives us a clue how we can use optical elements as

analogs for electron optidsl5]. Our efforts are devoted to Sarg %(Ue_vr) SL=L(ve—0v,)~Q, (B4

the demonstration of the “optical analog” of the drift region e
as a proof of principle for the existence of such a type of drift ) )
region. and finally the phase shift has the form
Below, we present the design by means of electron o o
“prisms,” and electron “plates” which are acting almost in A= V(E_ b) + V( r E)Ue_vr‘ (B5)
the same way as prisms and plates in optics. An electronic r v Uy

prism deflects electrons by some angle which depends on the

velocity of the electrorfwhich is an effect similar to disper- Adjusting some parameters of the drift regitfor example

sion in optic3. An electron plate is a region where electronsle, 6, dae/dve) We can transform the phase shift into the

are delayed for some additional time. Both prisms and plateform we need for FELWI, namely,

can be designed by means of some region in space with

magnetic fields in a way analogous to an electron lens. Ap=A¢o—Lunid. (B6)
In Fig. 8, we present a scheme of the drift region. This . . -

can be divided into three parts: a splitter, a kink region, and '€ Possibility to do this meets the condition

a collector. The splittefa combination of prisms 1 and & Lo

a part of the drift region which sorts electrons according to L<—% (B7)

their detunings and arranges their motion in the next stage of Uy
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At this stage we have a phase-shift derivative over thes,,. This oblique light propagation gives rise to an electron
detuning as we wanted to, and the last task is to create motion in the &,z) plane. Knowing that the trajectories in
kink-type phase shift47). This can be easily done by intro- the (v,,v,) plane are straight lines with a slopé&é,, rela-
ducing a plate inside the kink region, so that the electronsive to thev, axis we can determine the entrance detuning of
having negative detuning may pass through this plate addingn electron by resolving this electron motion in thg ()
the 7 phase shift, but others avoiding it adding no shift plane. The splitter transforms this motion from thg, (v,)
(therefore the name being “kink region.’Thus we succeed plane into the X,y) plane. The last problem therefore re-
in designing the right phase shift in its dependence on théluces to a proper adjustment of the plate inside the kink
electron detuning at thexit from the first wiggler; but for  region. To solve it we should rotate the plate by the angle
FELW!I we need to design a drift region as a function of the
detuning at thentranceof the first wiggler. To achieve this P
we need a kind of “fate teller” which should tell us what has tan®=y2—"
been the detuning of the electron before the interaction inside daeldve
the first wiggler.

As was shown in[11], this task can be performed by around thez axis to add the phase for negative initial
tilting the laser beam relative to the wiggler through an angledetunings.

(B8)
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